Search results for "metal organic framework"

showing 10 items of 11 documents

Fine-tuning of the confined space in microporous metal–organic frameworks for efficient mercury removal

2017

Offsetting the impact of human activities on the biogeochemical cycle of mercury has become necessary for a sustainable planet. Herein, we report the development of a water-stable and eco-friendly metal–organic framework, which has the formula {Cu4II[(S,S)-methox]2}·5H2O (1), where methox is bis[(S)-methionine]oxalyl diamide. Its features include narrow functional channels decorated with thioalkyl chains, which are able to capture HgCl2 from aqueous media in an efficient, selective, and rapid manner. The conscious design effort in terms of size, shape, and reactivity of the channels results in extremely efficient immobilization of HgCl2 guest species in a very stable conformation, similar t…

Fine-tuningmercuryInorganic chemistrychemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesmetal organic frameworkMercury removalAdsorptionOrganic chemistryGeneral Materials ScienceConfined spaceMOFQuímica InorgánicaMetal–organic frameworksAqueous mediumRenewable Energy Sustainability and the EnvironmentGeneral ChemistryMicroporous materialheavy metal021001 nanoscience & nanotechnology0104 chemical sciencesMercury (element)Contaminated waterAqueous mediachemistryMetal-organic framework0210 nano-technologyJournal of Materials Chemistry A
researchProduct

The oxamate route, a versatile post-functionalization for metal incorporation in MIL-101(Cr): Catalytic applications of Cu, Pd, and Au

2013

Abstract A new consecutive post-functionalization method has been developed for the inclusion of additional metal functionalities in Metal Organic Frameworks (MOFs) through oxamate as chelating agent. This may result in catalytic centers of metal–organic complexes or in controlled formation of metal nanoparticles, demonstrated for Cu, Pd and Au, in the highly stable MIL-101(Cr) framework. In a first post-synthesis step, reduction of the NO 2 -MIL-101(Cr) leads to the formation of NH 2 -MIL-101(Cr). The second functionalization consists of a straightforward condensation of the amino groups of the ligand with ethyl chloro-oxoacetate resulting in the formation of free oxamates attached to the …

Heterogeneous catalysisChemistryInorganic chemistrychemistry.chemical_elementHeterogeneous catalysisCopperPost-functionalizationCatalysisCoupling reactionCatalysisMetalMetal complexMetal organic frameworkColloidal goldNH2-MIL-101(Cr)visual_artvisual_art.visual_art_mediumNanoparticlesMetal-organic frameworkOxamateGoldPhysical and Theoretical ChemistryPalladiumCopperPalladium
researchProduct

Synthesis of New Materials

2013

Hybrid materials catalysis polyoxometalates metal organic frameworks carbon nanoformsSettore CHIM/06 - Chimica Organica
researchProduct

Palladium-Based Metal Organic Frameworks as Heterogeneous Catalysts for C-C Couplings

2022

Among the various cross coupling reactions, C−C cross coupling reaction has attracted many researchers to investigate in the last four decades. The continuous, constant, and consistent progress in this field fetched a Noble prize in 2010, showing the importance of this reaction in diversified fields. Among the various transition metals studied for this reaction, Pd is one of the metals that has exhibited the highest activity due to its unique features and reactivity. Although Pd-based homogeneous catalyst was the preferred choice for many researchers, the field slowly diverted towards the development of Pd-based heterogeneous catalysts for C−C coupling reactions. This is obviously due to th…

Inorganic ChemistrySuzuki-MiyauraHeterogeneous catalysisOrganic ChemistryMetal organic frameworksPhysical and Theoretical ChemistryC−C cross couplingCatalysisPalladium
researchProduct

Divergent Adsorption-Dependent Luminescence of Amino-Functionalized Lanthanide Metal-Organic Frameworks for Highly Sensitive NO2 Sensors

2020

International audience; A novel gas sensing mechanism exploiting lanthanide luminescence modulation upon NO2 adsorption is demonstrated here. Two isostructural lanthanide-based metal–organic frameworks (MOFs) are used, including an amino group as the sensitive recognition center for NO2 molecules. The transfer of energy from the organic ligands to Ln is strongly dependent on the presence of NO2, resulting in an unprecedented photoluminescent sensing scheme. Thereby, NO2 exposition triggers either a reversible enhancement or a decrease in the luminescence intensity, depending on the lanthanide ion (Eu or Tb). Our experimental studies combined with density functional theory and complete activ…

LanthanideIonsPhotoluminescenceLuminescenceChemistryLigandAb initioMetal organic frameworks02 engineering and technology[CHIM.MATE]Chemical Sciences/Material chemistryMolecules010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistryLigands01 natural sciences0104 chemical sciences[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryAdsorptionGeneral Materials ScienceMetal-organic frameworkPhysical and Theoretical ChemistryIsostructural0210 nano-technologyLuminescence
researchProduct

Enantiospecific Response in Cross-Polarization Solid-State Nuclear Magnetic Resonance of Optically Active Metal Organic Frameworks.

2020

We report herein on a NMR-based enantiospecific response for a family of optically active metal-organic frameworks. Cross-polarization of the 1H-13C couple was performed, and the intensities of the 13C nuclei NMR signals were measured to be different for the two enantiomers. In a direct-pulse experiment, which prevents cross-polarization, the intensity difference of the 13C NMR signals of the two nanostructured enantiomers vanished. This result is due to changes of the nuclear spin relaxation times due to the electron spin spatial asymmetry induced by chemical bond polarization involving a chiral center. These experiments put forward on firm ground that the chiral-induced spin selectivity e…

Magnetic Resonance SpectroscopyOptical Phenomenamedia_common.quotation_subject010402 general chemistry01 natural sciencesBiochemistryAsymmetryCatalysisColloid and Surface ChemistryPolarization (electrochemistry)Spin (physics)QuantumMetal-Organic Frameworksmedia_commonChemistryCircular DichroismRelaxation (NMR)General ChemistryCarbon-13 NMRMetal Organic FrameworkNMR0104 chemical sciencesChemical bondSolid-state nuclear magnetic resonanceChemical physicsSettore CHIM/03 - Chimica Generale E InorganicaCondensed Matter::Strongly Correlated ElectronsJournal of the American Chemical Society
researchProduct

Efficient Gas Separation and Transport Mechanism in Rare Hemilabile Metal–Organic Framework

2019

Understanding/visualizing the established interactions between gases and adsorbents is mandatory to implement better performance materials in adsorption/separation processes. Here we report the unique behavior of a rare example of a hemilabile chiral three-dimensional metal–organic framework (MOF) with an unprecedented qtz-e-type topology, with formula CuII2(S,S)-hismox·5H2O (1) (hismox = bis[(S)-histidine]oxalyl diamide). 1 exhibits a continuous and reversible breathing behavior, based on the hemilability of carboxylate groups from l-histidine. In situ powder (PXRD) and single crystal X-ray diffraction (SCXRD) using synchrotron radiation allowed us to unveil the crystal structures of four …

Materials scienceGeneral Chemical EngineeringQuímica organometàl·lica02 engineering and technologyCrystal structure010402 general chemistry01 natural scienceschemistry.chemical_compoundAdsorptiontransport mechanismMaterials ChemistryGas separationCarboxylateQuímica InorgánicaGas separationGeneral ChemistryMetal Organic FrameworkCiència dels materials021001 nanoscience & nanotechnologyEfficient gas separation0104 chemical scienceschemistryHemilabilityPhysical chemistryRare hemilabile metal-organic frameworkmixed matrix membranesMetal-organic frameworkTransport mechanism0210 nano-technologySingle crystalPowder diffractionChemistry of Materials
researchProduct

Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Ap…

2020

[EN] The rapid increasing of the population in combination with the emergence of new energy-consuming technologies has risen worldwide total energy consumption towards unprecedent values. Furthermore, fossil fuel reserves are running out very quickly and the polluting greenhouse gases emitted during their utilization need to be reduced. In this scenario, a few alternative energy sources have been proposed and, among these, proton exchange membrane (PEM) fuel cells are promising. Recently, polybenzimidazole-based polymers, featuring high chemical and thermal stability, in combination with fillers that can regulate the proton mobility, have attracted tremendous attention for their roles as PE…

Materials sciencePolymers and PlasticspolymerPopulationCarbon nanotubesMetal organic frameworksProton exchange membrane fuel cellNanotechnologyReviewfuel cellsProton exchange membranelcsh:QD241-441lcsh:Organic chemistryFast ion conductorFuel cellsPolymereducationGraphene oxidechemistry.chemical_classificationConductivityeducation.field_of_studybusiness.industryFossil fuelComposite membranesGeneral ChemistryPolymerPolybenzimidazoleIonic liquidspolybenzimidazolechemistryMAQUINAS Y MOTORES TERMICOSAlternative energyFuel cellsComposite membraneconductivitybusinesscomposite membranesproton exchange membranePolymers
researchProduct

Unveiled the Source of the Structural Instability of HKUST Powders upon Mechanical Compaction: Definition of a Fully Preserving Tableting Method

2019

Metal–organic frameworks (MOFs) are getting closer to finally being used in commercial applications. In order to maximize their packing density, mechanical strength, stability in reactive environments, and many other properties, the compaction of MOF powders is a fundamental step for the application field of research of these extraordinary materials. In particular, HKUST-1 is among the most promising and studied MOF. Contrary to what reported so far in the literature, here we prove that the tableting of HKUST-1 powders without any damage of the lattice is possible and easy to get. For the first time, this kind of investigation has been performed exploiting its peculiar magnetic properties w…

Metal Organic Frameworks electron paramagnetic resonance xrd bet high-surface materials compaction powder
researchProduct

Confined crystallization of a HKUST-1 metal–organic framework within mesostructured silica with enhanced structural resistance towards water

2017

A HKUST-1 metal–organic framework was crystallized in the NH2-modified mesostructured silica FDU-12 in order to improve its structural stability upon water exposure. In-depth structural characterization studies of the designed composite confirmed successful formation of the MOF phase within the ordered spherical mesopores of the silica matrix. In spite of the confinement within the cavities, MOF exhibits full accessibility for the adsorbed gas molecules. In contrast to the bulk HKUST-1, which undergoes slow phase transition in a humid environment, the structural integrity of the HKUST-1 in the humid-protective matrix remains unchanged even after immersion and stirring in water at elevated t…

Phase transitionMaterials scienceRenewable Energy Sustainability and the EnvironmentComposite numberEngineering controlled terms: Crystalline materialsOrganometallicsStability Compendex keywords Confined crystallizationElevated temperatureMesostructured silicaMetal organic frameworkSpherical mesoporesStructural characterizationStructural resistanceStructural stabilities Engineering main heading: SilicaNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceslaw.inventionAdsorptionChemical engineeringlawPhase (matter)MoleculeGeneral Materials ScienceMetal-organic frameworkCrystallization0210 nano-technologyMesoporous material
researchProduct